Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

نویسندگان

  • Edson Jiovany Ramírez-Nava
  • Daniel Ortega-Cuellar
  • Hugo Serrano-Posada
  • Abigail González-Valdez
  • America Vanoye-Carlo
  • Beatriz Hernández-Ochoa
  • Edgar Sierra-Palacios
  • Jessica Hernández-Pineda
  • Eduardo Rodríguez-Bustamante
  • Roberto Arreguin-Espinosa
  • Jesús Oria-Hernández
  • Horacio Reyes-Vivas
  • Jaime Marcial-Quino
  • Saúl Gómez-Manzo
چکیده

Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A- (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A-. Moreover, our study suggests that the G6PD Nefza and G6PD A- mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation

  Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...

متن کامل

The Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells

Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...

متن کامل

Molecular and morphological assessment of genetic variability induced by gamma radiation in canola

Mutation induction is considered as an effective way to enrich plant genetic variation, particularly for traits with a very low level of genetic variation. This research was conducted to assess genetic variation induced by gamma radiation in M2 and M3 mutant lines of canola (Brassica napus L.) by SSR and morphological characteristics and to identify useful mutants in terms of agronomic traits. ...

متن کامل

Effect of Chemical Mutagen on Some Biochemical Properties of Stevia rebaudiana Bertoni

Induced mutagenesis causes an increase variation of some products with limited genetic resources. In this study, the antioxidant enzymes activity, biochemical properties and glycoside content of Stevia were assessed by EMS (chemical mutagen) based on two experiments as factorial with completely randomized design with three replications. The results of the first experiment showed that some prope...

متن کامل

Multiple G6PD mutations are associated with a clinical and biochemical phenotype similar to that of G6PD Mediterranean.

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common red cell abnormalities, is characterized by a wide clinical, biochemical, and molecular heterogeneity. In this study we have determined the molecular basis of G6PD deficiency in a sample of 70 male subjects, originating from different parts of Italy, who all shared a clinical and biochemical phenotype identical or very ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017